Analysis of the potential evapotranspiration in Cambará do Sul municipality, Rio Grande do Sul state

Analysis of the potential evapotranspiration in Cambará do Sul municipality, Rio Grande do Sul state

Authors

  • Vinicius Santanna Castiglio Universidade Federal do Rio Grande do Sul
  • Karla Campagnolo Universidade Federal do Rio Grande do Sul/Doutoranda
  • Masato Kobiyama Universidade Federal do Rio Grande do Sul/Professor

DOI:

https://doi.org/10.21170/geonorte.2021.V.12.N.39.26.43

Keywords:

Evapotranspiração, Método de Thornthwaite, Método de Penman modificado, Hidroclimatologia

Abstract

Evapotranspiration, as a part of the hydrological cycle, is classified into two categories: real and potential, where the first represents the natural loss of water to the atmosphere, and the second portrays optimal conditions of balance between evaporation and transpiration. In this work, potential evapotranspiration (ETP) was characterized by the methods of Thornthwaite and modified Penman, and analyzed the data measured at two meteorological stations installed in Cambará do Sul city (RS), during the period from October/2017 to September/2019, and daily insolation data from a conventional station for the same period in the municipality of Bom Jesus (RS). Thus, the main existing discrepancies in the data (precipitation, temperature, relative humidity and wind velocity) measured between the two meteorological stations and the estimated ETP were evaluated, in which one is in an environmentally preserved region and the other in an urbanized area. With the modified Penman method, the INMET Station presents estimate mean evapotranspiration of 1075mm/year meanwhile the GPDEN Station 684mm/year. In the case of the Thornthwaite method with data from the GPDEN Station, the monthly values of ETP were always underestimated, with the exception of January. The obtained results permit to conclude that the modified Penman method generates higher ETP values than those of Thornthwaite method.

Downloads

Download data is not yet available.

References

ALENCAR, L.P.; SEDIYAMA, G.C.; MANTOVANI, E.C. Estimation of reference evapotranspiration (ETo) under FAO standards with missing climatic data in Minas Gerais, Brazil. Engenharia Agrícola, v.35, n.1, p. 39-50, 2015.

ALLEN, R.G.; PEREIRA, L.S.; RAES, D.; SMITH. M. Crop evapotranspiration: guidelines for computing crop water requirements. Rome: FAO, 1998. 300p. (FAO – Irrigation and Drainage Paper, 56).

AYOADE, J.O. Introdução à climatologia para os Trópicos. 4 ed. Rio de Janeiro: Bertrand Brasil, 1983, p. 128-138.

BRUTSAERT, W. Hydrology: an introduction. 1 ed. New York, Cambridge: Cambridge University, 2005, p. 117-158.

CAMARGO, A.P.; SENTELHAS, P.C.; Avaliação do desempenho de diferentes métodos de estimativa da evapotranspiração potencial no Estado de São Paulo, Brasil. Revista Brasileira de Agrometeorologia, v.5, n.1, p. 89-97, 1997.

CAMARGO, A.P.; CAMARGO, M.B.P. Uma revisão analítica da evapotranspiração potencial. Revista Bragantia, v.59, n.2, p. 125-137, 2000.

CAMPAGNOLO, K.; CASTIGLIO, V.S.; VASCONCELLOS, S.M. KOBIYAMA, M. Aplicação do Tank Model para a bacia do rio Perdizes em Cambará do Sul/RS. In: XXIII SIMPÓSIO BRASILEIRO DE RECURSOS HÍDRICOS, 2019, Foz do Iguaçu. Anais, 2019. 10p.

CAPORUSSO, N.B.; ROLIM, G.S. Reference evapotranspiration models using different time scales in the Jaboticabal region of São Paulo, Brazil. Acta Scientiarum Agronomy, v.37, n.1, p. 1-9, 2015.

CARVALHO, L.G.; RIOS, G.F.A.; MIRANDA, W.L.; CASTRO NETO, P. Evapotranspiração de referência: Uma abordagem atual de diferentes métodos de estimativa. Pesquisa Agropecuária Tropical, v.41, p. 456-465, 2011.

CHAFFE, P.L.B.; SILVA, R.V.; KOBIYAMA, M. Rainfall-runoff processe analysis of the Pequeno River catchment, Curitiba metropolitan region, Brazil, with two hydrological models. Revista Ambi-Água, v.3., n.3, p. 43-54, 2008.

CHAUHAN, S.; SHRIVASTAVA, R.K. Performance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networks. Water Resource Management, v. 23, n. 5, p. 825-837, 2009.

DOORENBOS, J.; PRUIT, W.O. Crop Water Requirements. Irrigation and Drainage Paper, n. 24, FAO, Rome, Italy, p. 15-29.

DORFMAN, R. Critérios de avaliação de alguns métodos de estimativa da evapotranspiração potencial. Dissertação (Mestrado em Hidráulica Aplicada), Universidade Federal do Rio Grande do Sul, Porto Alegre-RS, 1977. 130p.

FALAMARZIA, Y.; PALIZDANA, N.; FENG, H.T.; SHUILEE, Y. Estimating evapotranspiration from temperature and wind speed data using artificial and wavelet neural networks (WNNs). Agricultural Water Management, v.140, p. 26-36, 2014.

FRANCISCO, P.R.M.; MEDEIROS, R.M.; MATOS, R.M., SANTOS, D.; SABOYA, L.M.F. Evapotranspiração de referência mensal e anual pelo método de Thornthwaite para o estado da Paraíba. Revista Brasileira de Climatologia, v.20, p. 135-147, 2017.

GURSKI, B.C.; JERSZURKI, D.; SOUZA, J.M. Alternative Methods of Reference Evapotranspiration for Brazilian Climate Types. Revista Brasileira de Meteorologia, v.33, n.3, p. 567-578, 2018.

IGANCI, J.R.V.; HEIDEN, G.; MIOTTO, S.T.S.; PENNINGTON, R.T. Campos de Cima da Serra: the Brazilian Subtropical Highland Grasslands show an unexpected level of plant endemism. Botanical Journal of the Linnean Society, v. 167, p. 378-393, 2011.

KOBIYAMA, M.; CHAFFE, P.L.B. Water balance in Cubatão-Sul river catchment, Santa Catarina, Brazil. Revista Ambi-Água, v.3, n.1, p. 5-17, 2008.

MATZENAUER, R.; RADIN, B.; ALMEIDA, I.R. Atlas Climático: Rio Grande do Sul. Porto Alegre: Secretaria da Agricultura Pecuária e Agronegócio; Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Porto Alegre, 2011.

MELO, G.L.de; FERNANDES, A.L.T. Evaluation of empirical methods to estimate reference evapotranspiration in Uberaba, State of Minas Gerais, Brazil. Engenharia Agrícola, v.32, n.5, p. 875-888, 2012.

MUHAMMAD, M.K.; NASHWAN, M.S.; SHAHID, S.; ISMAIL,T.B.; SONG, Y.H.; CHUNG, E.S. Evaluation of Empirical Reference Evapotranspiration Models Using Compromise Programming: A Case Study of Peninsular Malaysia. Sustainability, 11, 4267, 2019. DOI:10.3390/su11164267

OLIVEIRA, L.A.; CASAROLI, D.; ALVES JÚNIOR, J.; EVANGELISTA, A.W.P. Evapotranspiration: A scientometricanalysis. Científica, v.47, n.1, p. 8–14, 2019.

PENMAN, H. L. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London, n.193, p. 120–145, 1948.

PILLAR, V.P.; MULLER, S.C.; CASTILHOS, Z.M.S.; JACQUES, A.V.A. Campos Sulinos – conservação e uso sustentável da biodiversidade. 1 ed. Brasília, Ministério do Meio Ambiente, 2009. 403p.

SMITHSONIAN INSTITUTION. Smithsonian Meteorological Tables. 6thed, U.S. Govt. Print. Off., Washington, 1951. 527p.

SOUZA, A.F.; CAMPELO JÚNIOR, J.H. Desempenho de métodos de estimativa da evapotranspiração de referência para região da Baixada Cuiabana, MT. Agrometeoros, v.25, n.2, p. 395-403, 2017.

SUERTEGARAY, D.M.A.; FUJIMOTO, N.S.V.M. Morfogênese do relevo do Rio Grande do Sul. In: VERDUM, R.; BASSO, L.A.; SUERTEGARAY, D.M.A. (orgs.). Rio Grande do Sul: paisagens e territórios em transformação. Ed. UFRGS, Porto Alegre, 2004. p. 11-26.

THORNTHWAITE, C. W. An approach toward a rational classification of climate. Geographical Review, v.38, p. 55-94, 1948.

THORNTHWAITE, C.W.; WILM, H.G. Report of the Committee on evapotranspiration and transpiration, 1943-1944. Transactions of the American Geophysical Union, v.25, n.5, p. 686-693, 1944.

VESTENA, L.R.; KOBIYAMA, M. Water balance in Karst: study of the Ribeirão da Onça catchmente in Colombo City, Paraná State – Brazil. Brazilian Archives of Biology and Technology an International Journal, v.50, n.5, p. 905-912, 2007.

WARD, A.D.; TRIMBLE, S.W. Environmental Hydrology. 2nd ed. Boca Raton: Lewis Publishers, 2004. 475p.

Published

2021-06-25

How to Cite

Santanna Castiglio, V., Campagnolo, K., & Kobiyama, M. . (2021). Analysis of the potential evapotranspiration in Cambará do Sul municipality, Rio Grande do Sul state: Analysis of the potential evapotranspiration in Cambará do Sul municipality, Rio Grande do Sul state. REVISTA GEONORTE, 12(39), 26–43. https://doi.org/10.21170/geonorte.2021.V.12.N.39.26.43

Most read articles by the same author(s)