MULTI-SENSOR TECHNIQUES TO FLOOD MAPPING

THE ACRE STUDY CASE (AMAZON, BRAZIL)

Autores/as

  • Milena Marília Nogueira de Andrade Universidade Federal Rural da Amazônia
  • Luciana Souza Brabo Serviço Geológico do Brasil

DOI:

https://doi.org/10.21170/geonorte.2022.V.13.N.42.90.111

Palabras clave:

Ameaça, Sensoriamento Remoto, NDWI, Tarauacá

Resumen

The aim of this article is to map the flooding area in the Tarauacá city of Acre State (Amazon basin, Brazil) using multi-sensor techniques. Floods are the most common disaster in the Amazon, even though flood and risk mapping has only recently been delimited by governmental issues. The methods to flood mapping included Synthetic Aperture Radar (SAR) (Sentinel-1/S1) and optical sensor (Sentinel-2/S2) data, separately, and in a fusion approach. The flood extend was measured on Sentinel-1 VV, on NDWI Sentinel-2, and on unsupervised classification from S1 and S2 fusion and classes: soil exposed, urban, vegetation, shadow, water and clouds. The resulting total areas vary by 8.23 km² (S1), 7.86 km² (NDWI-S2), and 11.87 km² (multi-sensor fusion). The fusion S1S2 results were validated from the calculation of global accuracy (70%), errors of omission (soil exposed 0; urban 31,25; vegetation 87,5; shadow, water and clouds 0), commission errors (soil exposed 50; urban 0; vegetation 75; shadow 6,25, water 6,25 and clouds 87,5), and the kappa index (0.59). Using multi-sensors is an alternative to calculate flood extension and can aid in mapping hydrological hazards in Amazon cities.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

ACRE. Zoneamento Ecológico-Econômico do Estado do Acre, Fase II – Escala 1:250.000: Documento Síntese. Secretaria de Estado de Meio Ambiente, Rio Branco. 2010a

ACRE. Zoneamento Ecológico-Econômico do Estado do Acre, Fase II – Escala 1:250.000: Secretaria de Estado de Meio Ambiente Recursos naturais: geologia, geomorfologia e solos do Acre. Secretaria de Estado de Meio Ambiente, Rio Branco. 2010b

ACRE. Plano estadual de Recursos Hídricos do Acre. Secretaria de Estado de Meio Ambiente, Rio Branco. 2012.

ACRE Decreto n. 8.084 de 22 de fevereiro de 2021. Declara Estado de Calamidade Pública nas áreas dos Municípios de Rio Branco, Sena Madureira, Santa Rosa do Purus, Feijó, Tarauacá, Jordão, Cruzeiro do Sul, Porto Walter, Mâncio Lima e Rodrigues Alves afetadas por enchentes, e dá outras providências. <https://agencia.ac.gov.br/wp-content/uploads/2021/02/DO16140183667617.pdf>.

Accessed 10 April 2021 . 2021

AMITRANO D.; MARTINO G.D.; IODICE A.; RICCIO D.; RUELLO G. Unsupervised rapid flood mapping using sentinel-1 grd sar images. IEEE Transactions on Geoscience and Remote Sensing, v.56, p. 3290–3299, 2018. https://dx.doi.org/10.1109/TGRS.2018.2797536

ANA - Agência Nacional de Águas. Registro da serie histórica. <https://www.gov.br/ana/pt-br> Accessed 10 April 2020. 2020.

ANDRADE M.M.N.; BANDEIRA I.C.N.; FONSECA D.D.F.; BEZERRA P.E.S.; ANDRADE A.S.; OLIVEIRA R.S. Flood risk mapping in the Amazon. In: THEODORE H.; PRASADA R. (Org) Flood Risk Management , 1ed. InTech, Rijeka, pp. 41-54. 2017.

ANDRADE M.M.N.; SZLAFSZTEIN C.F. Coping, adaptation strategies, and institutional perception of hydrological risks in an urban Amazon city. Disasters, v.44, p. 708-725, 2019. https://doi.org/10.1111/disa.12414

BECKER B.K. Undoing myths: the Amazon - an urbanized forest. In: Clüsener-Godt M, Sachs I (Orgs). Brazilian perspectives on sustainable development for the Amazon region. UNESCO, Paris, pp. 53-89, 1995.

BRUBASCHER J.P.; GUASSELLI L.A. Mapeamento da área inundável da planície do rio dos Sinos a partir do Índice NDWI, São Leopoldo – RS. In: Simpósio Brasileiro de Sensoriamento Remoto. 2013

CONGALTON R. A review of assessing the accuracy of classifications of remotely sensed data, Remote Sensing of Environment, v.37, p. 35–46, 1991.

COHEN J. A coefficient of agreement for nominal scales. Educational and Psychological Measurement, v. 46, p. 20-37, 1960.

CORTES J.P.S.; SZLAFSZTEIN C.F.; LUVIZOTTO G.L. Geomorfologia e planejamento ambiental em uma região de conflitos socioambientais na Amazônia Brasileira. Revista Geociências, v.39, n.3, p. 765 – 778, 2020.

CPRM - Companhia de Pesquisa de Recursos Minerais. Ação emergencial para delimitação de áreas em alto e muito alto risco a enchentes, inundações e movimentos de massa: Tarauacá, AC. https://rigeo.cprm.gov.br/jspui/handle/doc/15366. 2015

CPRM - Companhia de Pesquisa de Recursos Minerais. Unidades litoestratigráficas - 1: 1.000.000. https://geoportal.cprm.gov.br/geosgb/. 2004

CPRM - Companhia de Pesquisa de Recursos Minerais. Números de municípios mapeados com áreas de risco no Brasil. https://www.cprm.gov.br/publique/Gestao-Territorial/Prevencao-de-Desastres/Produtos-por-Estado---Setorizacao-de-Risco-Geologico-5390.html. 2021a

CPRM - Companhia de Pesquisa de Recursos Minerais. Boletim de alerta hidrológico com previsão de níveis na bacia do rio Acre. https://www.cprm.gov.br/sace/acre . 2021b.

D’ADDABBO A.; REFICE A.; PASQUARIELLO G.; LOVERGINE F.P.; CAPOLONGO D.; MANFREDA S. A bayesian network for flood detection combining sar imagery and ancillary data. IEEE Transactions on Geoscience and Remote Sensing, v. 54, p. 3612–3625, 2016. https://dx.doi.org/10.1109/TGRS.2016.2520487.

ESA – European Space Agency. Information about Sentinel-1 Data Products. https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-1/data-products. Accessed 15 june 2021. 2021.

FASSONI-ANDRADE A.C.; PAIVA R.C.D.; RUDORFF C.M.; BARBOSA C.C.F.; NOVO E.M.L.M. High-resolution mapping of floodplain topography from space: A case study in the Amazon. Remote Sensing of Environment. 2020. https://doi.org/10.1016/j.rse.2020.112065

FILIZOLA N.; GUYOT J.L.; MOLINIER M.; GUIMARÃES V.; OLIVEIRA E.; FREITAS M.A. Caracterização hidrológica da Bacia Amazônica. In: Rivas A, Freitas CEC (eds) Amazônia: uma perspectiva interdisciplinar. Editora da Universidade do Amazonas, Manaus, pp 35-53. 2002.

FOODY G.M. Status of Land Cover Classification Accuracy Assessment. Remote Sensing of Environment, v. 80, p. 185–201, 2002.

G1. Com 90% da cidade atingida pela cheia, Tarauacá decreta calamidade pública. https://g1.globo.com/ac/acre/noticia/2021/02/20/com-90percent-da-cidade-atingida-pela-cheia-tarauaca-decreta-calamidade-publica.ghtml. Accessed 20 february 2021. 2021.

HAQ M.; AKHTAR M.; MUHAMMAD S.; PARAS S.; RAHMATULLAH J. Techniques of remote sensing and GIS for flood monitoring and damage assessment: a case study of Sindh province, Pakistan. The Egyptian Journal of Remote Sensing and Space Science, v.15, n.2, p.135-141. 2012.

HORRITT M.S.; MASON D.C.; LUCKMAN A.J. Flood boundary delineation from synthetic aperture radar imagery using a statistical active contour model. International Journal of Remote Sensing, v. 22, p. 2489–2507, 2001. https://doi.org/10.1080/01431160116902

IBGE. Extensão territorial do município de Tarauacá. https://www.ibge.gov.br/cidades-e-estados/ac/tarauaca.html. Accessed 20 february 2021. 2021.

IBGE (2020) Instituto Brasileiro de Geografia e Estatística. Estatísticas por cidade e estado. Accessed 18 february 2021. 2020. Disponível em: <https://cidades.ibge.gov.br/brasil/ac/tarauaca/panorama>.

INGLADA J.; MERCIER G. A new statistical similarity measure for change detection in multitemporal sar images and its extension to multiscale change analysis. IEEE Transactions on Geoscience and Remote Sensing, v. 45, p. 1432–1445, 2007. https://doi.org/10.1109/TGRS.2007.893568

LANDIS J.R.; KOCH G.G. The measurement of observer agreement for categorical data. Biometrics, v. 33, p. 159–174, 1977.

LIMA J.L.; SOUSA K.N.S.; SANTOS P.R.B. Detecção remota dos potenciais efeitos de secas intensas sobre a sazonalidade da água no complexo fluvio-lacustre do Curuaí, Rio Amazonas, Pará, Brasil. Geo UERJ, n. 38, p. 1-14, 2019.

MACÊDO M.N.C.; DIAS H.C.T.; COELHO F.M.G.; ARAÚJO E.A.; SOUZA M.L.H.; SILVA E. Precipitação pluviométrica e vazão da bacia hidrográfica do Riozinho do Rôla, Amazônia Ocidental. Ambi-Água, v.8 p. 206-221, 2013. https://dx.doi.org/10.4136/ambi-agua.809

MANJUSREE P.; KUMAR L.P.; BHATT C.M.; RAO G.S.; BHANUMURTHY V. Optimization of Threshold Ranges for Rapid Flood Inundation Mapping by Evaluating Backscatter Profiles of High Incidence Angle SAR Images. International Journal of Disaster Risk Science, v.3, p. 113–122, 2012. https://doi.org/10.1007/s13753-012-0011-5

MARINI D.P.; SZLAFSTEIN C.F. Ameaças e desastres naturais na Amazônia Sul Ocidental: análise da bacia do rio purus. Ra’e Ga, v.35, p. 68-94, 2016. https://dx.doi.org/10.5380/raega.v35i0.38820

MARTINIS S.; TWELE A.; VOIGT S. Towards operational near real-time flood detection using a split-based automatic thresholding procedure on high resolution terrasar-x data. Natural Hazards and Earth System Science, v.9, p. 303–314, 2009. https://doi.org/10.5194/nhess-9-303-2009

MCFEETERS S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, v.17, p. 1425-1432, 1996. https://doi.org/10.1080/01431169608948714

MEMON A. A.; MUHAMMAD S.; RAHMAN S.; HAQ M. Flood monitoring and damage assessment using water indices: A case study of Pakistan flood-2012. The Egyptian Journal of Remote Sensing and Space Science, v.18, n.1, p.99-106, 2015.

MEYER F. Spaceborne Synthetic Aperture Radar: Principles, Data Access, and Basic Processing Techniques. In: FLORES-ANDERSON A.I.; HERNDON K.E.; THAPA R.B.; CHERRINGTON E. (ed) The Synthetic Aperture Radar (SAR) Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation. Nasa, pp. 21-44, 2019. https://doi.org/10.25966/nr2c-s697

MMA - Ministério do Meio Ambiente. Plano de Manejo da Reserva Extrativista do Alto Tarauacá/AC. Instituto Chico Mende de Conservação da Biodiversidade, Brasília, 2020.

NOVO E.M.L.M. Sensoriamento Remoto: princípios e aplicações. Edgard Blucher, São Paulo, 2008.

PARK J.; JANG S.; HONG R.; SUH K.; SONG I. Development of Land Cover Classification Model Using AI Based FusionNet Network. Remote Sensing, v.12, n.19, p.3171, 2020. https://doi.org/10.3390/rs12193171

PEREIRA D.M.; SZLAFSZTEIN C.F. Ameaças e desastres naturais na Amazônia Sul Ocidental: anaálise do Rio Purus. Ra’e Ga, v.35, p.68 – 94, 2015.

PRADHAN B.; TEHRANY M.S.; JEBUR M.N. A new semiautomated detection mapping of flood extent from terrasar-x satellite image using rule-based classification and taguchi optimization techniques. IEEE Transactions on Geoscience and Remote Sensing, v.54, p. 4331–4342, 2016. https://dx.doi.org/10.1109/TGRS.2016.2539957

PRIGENT C.; PAPA F.; AIRES F.; ROSSOW W.B.; MATTHEWS E. Global inundation dynamics inferred from multiple satellite observations. Journal of Geophysical Research, v.112, n.12, p.1993–2000, 2007.

RENO V.F.; NOVO E.M.L.M.; ALMEIDA-FILHO R.; SUEMITSU C. Mapeamento da antiga cobertura vegetal de várzea do Baixo Amazonas a partir de imagens históricas (1975-1981) do Sensor MSS-Landsat. Acta Amazonica, v.41, p. 47-56, 2011. https://doi.org/10.1590/S0044-59672011000100006

RICHEY J.E.; MERTES L.K.; DUNNE T.; VICTORIA R.L.; FORSBERG B.R.; TANCREDI A.C.N.S.; OLIVEIRA E. Sources and routing of the Amazon River flood wave. Global Biogeochemical Cycles, v.3, n.3, p. 191–204, 1989. https://doi.org/10.1029/gb003i003p00191

SAMANTA D.; SANYAL G. Development of Adaptive Thresholding Technique for Classification of Synthetic Aperture Radar Images. International Journal of Computer Science & Technology, v.2, p. 99- 102, 2001.

SOUZA C.M.; KIRCHHOFF F.T.; OLIVEIRA B.C.; RIBEIRO J.G.; SALES M.H. Long-term annual surface water change in the Brazilian Amazon Biome: Potential links with deforestation, infrastructure development and climate change. Water, 2019. https://doi. org/10.3390/w11030566

SOUZA S.V.; RODRIGUES S.W.P. Dados multi-sensores para reconhecimento e mapeamento de ambientes sedimentares na planície do Rio Amazonas. Revista Geociências, v. 39, n.2, p. 425 – 436, 2020.

STEHR A.; AGUAYO M. Snow cover dynamics in Andean watersheds of Chile (32.0–39.5◦ S) during the years 2000–2016. Hydrology and Earth System Science, v.21, p. 5111–5126, 2017.

SZLAFSZTEIN C.F. Management of natural disasters in the Brazilian Amazon region. Natural Hazards. v.76,p.1745-1757, 2015.

TOWNSEND P.A.; FOSTER J.R. A Synthetic Aperture Radar- Based Model to Assess Historical Changes in Lowland Floodplain Hydroperiod. Water Resources Research, v.38, p.1–20, 2002. https://doi.org/10.1029/2001WR001046

TRINDADE-JUNIOR S.C.D. Thinking about territorial modernization and diffuse urbanization in the Amazon. Mercator, v.14, p. 93-106, 2015. https://doi.org/10.4215/RM2015.1404.0007

UDDIN K.; MATIN M.A.; MEYER F.J. Operational flood mapping using multi-temporal sentinel-1 sar images: A case study from Bangladesh. Remote Sensing, v.11, 1581, 2019. https://doi.org/10.3390/rs11131581

WU S.; LIU R.; YOMMY A.S. SAR image despeckling using refined lee filter. In Proceedings of the 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics. 2015. https://doi.org/10.1109/IHMSC.2015.236

ZHANG M.; CHEN F.; LIANG D.; TIAN B.; YANG A. Use of Sentinel-1 GRD SAR Images to Delineate Flood Extent in Pakistan. Sustainability, v.12, 5784, (=2020. https://doi.org/10.3390/su12145784

Descargas

Publicado

2022-12-27

Cómo citar

Andrade, M. M. N. de, & Brabo, L. S. (2022). MULTI-SENSOR TECHNIQUES TO FLOOD MAPPING: THE ACRE STUDY CASE (AMAZON, BRAZIL). REVISTA GEONORTE, 13(42). https://doi.org/10.21170/geonorte.2022.V.13.N.42.90.111