Complementary molecular and genetic analysis in the investigation of thyroid nodules: an integrative review of the literature

Authors

DOI:

https://doi.org/10.60104/revhugv11036

Keywords:

Molecular markers, thyroid nodules, personalized medicine

Abstract

The use of genomic medicine in health presents itself as promising in the management of several diseases and this does not differ for the investigation of thyroid nodules, in which the use of this technology directs to diagnostic of more accurate conduct and prognosis, allowing to reduce, for example, the incidence of invasive procedures and potential complications to the patient, such as successive fine needle aspiration biopsies or surgery in benign cases. Therefore, it is known today that there is a multitude of molecular markers related to thyroid nodules, including gene panels patented by pharmaceutical companies, However, there is still a lack of review studies that seek to list the importance in the medical practice of each of these markers and the outcomes in patient management, especially from the perspective of diagnosis, conduct and prognosis. Thus, this literature review sought to elucidate the medical importance of molecular markers based on several studies available with a good sample size and related to the theme, indicating the molecular markers with the best evidence of being important for the management of the patient with thyroid nodules, which can contribute to support and encourage the application of genomic medicine through public policies, for example. Hence, in our review, significant differences were observed in relation to the commercially available genetic panels regarding their power of risk stratification and, moreover, when the molecular markers are analyzed individually, performance variables differed greatly in the studies, although BRAF mutations and the TERT promoter were quite related to malignancy, which leads to a joint approach of markers when performing the individualization of thyroid nodules of a patient, whether from the point of view of diagnosis, conduct and prognosis.

Downloads

Download data is not yet available.

References

Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68(6):394–424; https://doi.org/10.3322/caac.21492

Releases e Notas | INCA - Instituto Nacional de Câncer. n.d. Disponível em: https://www.inca.gov.br/imprensa/inca-promove-campanha-de- prevencao-ao-cancer-de-cabeca-e-pescoco

Mungan S, Ersoz S, Saygin I, et al. Nuclear morphometric findings in undetermined cytology: A possible clue for prediction of BRAF mutation in papillary thyroid carcinomas. Endocr Res 2017;42(2):138–144; https://doi.org/10.1080/07435800.2016.1255895

Filetti S, Durante C, Hartl D, et al. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology 2019;30(12):1856–1883; https://doi.org/10.1093/annonc/mdz400

Seib CD, Sosa JA. Evolving Understanding of the Epidemiology of Thyroid Cancer. Endocrinol Metab Clin North Am 2019;48(1):23–35; https://doi.org/10.1016/j.ecl.2018.10.002

Li M, Maso LD, Vaccarella S. Global trends in thyroid cancer incidence and the impact of overdiagnosis. Lancet Diabetes Endocrinol 2020;8(6):468–470; https://doi.org/10.1016/S2213-8587(20)30115-7

Pellegriti G, Frasca F, Regalbuto C, et al. Worldwide Increasing Incidence of Thyroid Cancer: Update on Epidemiology and Risk Factors. J Cancer Epidemiol 2013;2013:1–10; https://doi.org/10.1155/2013/965212

Guimarães RM, Muzi CD, Parreira VG, et al. Evolution of thyroid cancer mortality in adults in Brazil. Arquivos Brasileiros de Endocrinologia & Metabologia 2013;57(7):538–544; https://doi.org/10.1590/S0004-27302013000700007

Scheffel RS, Zanella AB, Antunes D, et al. Low Recurrence Rates in a Cohort of Differentiated Thyroid Carcinoma Patients: A Referral Center Experience. Thyroid 2015;25(8):883–889; https://doi.org/10.1089/thy.2015.0077

Santos LMS, Sales DF, Brito VS. Evolução temporal da mortalidade por câncer de tireoide no Brasil no período de 2000 a 2012. Revista Brasileira de Análises Clínicas - RBAC n.d.;48(2). Disponível em: https://www.rbac.org.br/artigos/evolucao-temporal-da-mortalidade-por-cancer-de-tireoide-no-brasil-no-periodo-de-2000-a-2012-48n-2/

Vaccarella S, Dal Maso L, Laversanne M, et al. The Impact of Diagnostic Changes on the Rise in Thyroid Cancer Incidence: A Population-Based Study in Selected High-Resource Countries. Thyroid 2015;25(10):1127–1136; https://doi.org/10.1089/thy.2015.0116

Cabanillas ME, McFadden DG, Durante C. Thyroid cancer. The Lancet 2016;388(10061):2783–2795; https://doi.org/10.1016/S0140-6736(16)30172-6

Releases e Notas | INCA - Instituto Nacional de Câncer. n.d. Disponível em: https://www.inca.gov.br/imprensa/inca-promove-campanha-de- prevencao-ao-cancer-de-cabeca-e-pescoco

Nikiforov YE, Seethala RR, Tallini G, et al. Nomenclature Revision for Encapsulated Follicular Variant of Papillary Thyroid Carcinoma. JAMA Oncol 2016;2(8):1023; https://doi.org/10.1001/jamaoncol.2016.0386

Xiang Z, Zhong C, Chang A, et al. Immune-related key gene CLDN10 correlates with lymph node metastasis but predicts favorable prognosis in papillary thyroid carcinoma. Aging 2020;12(3):2825–2839; https://doi.org/10.18632/aging.102780

Malik A, Aziz F, Beshyah S, et al. Characteristics and management of papillary thyroid microcarcinoma in the United Arab Emirates: Experience from a large tertiary hospital. Saudi J Med Med Sci 2022;10(1):42; https://doi.org/10.4103/sjmms.sjmms_393_21

Medas F, Canu GL, Cappellacci F, et al. Predictive Factors of Lymph Node Metastasis in Patients With Papillary Microcarcinoma of the Thyroid: Retrospective Analysis on 293 Cases. Front Endocrinol (Lausanne) 2020;11:551; https://doi.org/10.3389/fendo.2020.00551

Naoum GE, Morkos M, Kim B, et al. Novel targeted therapies and immunotherapy for advanced thyroid cancers. Mol Cancer 2018;17(1):51; https://doi.org/10.1186/s12943-018-0786-0

Huang J, Harris EJ, Lorch JH. Treatment of Aggressive Thyroid Cancer. Surg Pathol Clin 2019;12(4):943–950; https://doi.org/10.1016/j.path.2019.08.004

Langer JE, Baloch ZW, McGrath C, et al. Thyroid Nodule Fine-Needle Aspiration. Seminars in Ultrasound, CT and MRI 2012;33(2):158–165; https://doi.org/10.1053/j.sult.2011.12.002

Cibas ES, Ali SZ. The 2017 Bethesda System for Reporting Thyroid Cytopathology. Thyroid 2017;27(11):1341–1346; https://doi.org/10.1089/thy.2017.0500

Muzza M, Colombo C, Pogliaghi G, et al. Molecular markers for the classification of cytologically indeterminate thyroid nodules. J Endocrinol Invest 2020;43(6):703–716; https://doi.org/10.1007/s40618-019-01164-w

Sheng D, Yu X, Li H, et al. BRAF V600E mutation and the Bethesda System for Reporting Thyroid Cytopathology of fine-needle aspiration biopsy for distinguishing benign from malignant thyroid nodules. Medicine 2021;100(37):e27167; https://doi.org/10.1097/MD.0000000000027167

Xia S, Chen Y, Zhan W, et al. Ultrasound-Guided Fine-Needle Aspiration Versus Fine-Needle Capillary Sampling in Evaluation of Lymph Node Metastasis of Thyroid Cancer. Front Oncol 2021;11:642142; https://doi.org/10.3389/fonc.2021.642142

Chen JV, Morgan TA, Liu C, et al. Cervical Lymph Node Features Predictive of Suboptimal Adequacy During Ultrasound‐Guided Fine‐Needle Aspiration in Thyroid Cancer Patients. Journal of Ultrasound in Medicine 2022;41(1):135–145; https://doi.org/10.1002/jum.15688

Joo L, Na DG, Kim J, et al. Comparison of Core Needle Biopsy and Repeat Fine- Needle Aspiration in Avoiding Diagnostic Surgery for Thyroid Nodules Initially Diagnosed as Atypia/Follicular Lesion of Undetermined Significance. Korean J Radiol 2022;23(2):280; https://doi.org/10.3348/kjr.2021.0619

Mete O. Special Issue On the 2022 WHO Classification of Endocrine and Neuroendocrine Tumors: a New Primer for Endocrine Pathology Practice. Endocr Pathol 2022;33(1):1–2; https://doi.org/10.1007/s12022-022-09712-6

Alexander EK, Doherty GM, Barletta JA. Management of thyroid nodules. Lancet Diabetes Endocrinol 2022;10(7):540–548; https://doi.org/10.1016/S2213-8587(22)00139-5

Baloch ZW, Asa SL, Barletta JA, et al. Overview of the 2022 WHO Classification of Thyroid Neoplasms. Endocr Pathol 2022;33(1):27–63; https://doi.org/10.1007/s12022- 022-09707-3

Wong KS, Barletta JA. The new endocrine WHO classification: What does this mean for thyroid cytology? Cancer Cytopathol 2022;130(9):658–662; https://doi.org/10.1002/cncy.22634

Cree IA. From Counting Mitoses to Ki67 Assessment: Technical Pitfalls in the New WHO Classification of Endocrine and Neuroendocrine Tumors. Endocr Pathol 2022;33(1):3–5; https://doi.org/10.1007/s12022-021-09701-1

Liu Z, Zhu L, Roberts R, et al. Toward Clinical Implementation of Next- Generation Sequencing-Based Genetic Testing in Rare Diseases: Where Are We? Trends in Genetics 2019;35(11):852–867; https://doi.org/10.1016/j.tig.2019.08.006

Turro E, Astle WJ, Megy K, et al. Whole-genome sequencing of patients with rare diseases in a national health system. Nature 2020;583(7814):96–102; https://doi.org/10.1038/s41586-020-2434-2

ANS - Legislação. RESOLUÇÃO NORMATIVA - RN Nº 465, DE 24 DE FEVEREIRO DE 2021 n.d. Disponível em: https://www.in.gov.br/en/web/dou/-/resolucao-normativa-rn-n-465-de-24-de-fevereiro-de-2021-306209339

Volpi E. Câncer da tireoide – Fisiopatologia, diagnóstico, tratamento e perspectivas. 1. Europa Press Comunicação Brasil: São Paulo; n.d. Disponível em: https://rosaliapadovani.com.br/wp-content/uploads/2022/03/Tireoide_Livro.pdf

Shyr D, Liu Q. Next generation sequencing in cancer research and clinical application. Biol Proced Online 2013;15(1):4; https://doi.org/10.1186/1480-9222-15-4

Ku C, Cooper D, Iacopetta B, et al. Integrating next-generation sequencing into the diagnostic testing of inherited cancer predisposition. Clin Genet 2013;83(1):2–6; https://doi.org/10.1111/cge.12028

Santos MT, Silveira CS, Santos D. Redução de custos e de cirurgias em uma operadora de saúde brasileira com o uso de um teste molecular para nódulos de tireoide de citologia indeterminada: uma análise retrospectiva e prospectiva de mundo real. In: Goiânia - GO: XX Encontro Brasileiro de TIREOIDE - BRAZILIAN ARCHIVES OF ENDOCRINOLOGY AND METABOLISM n.d. Disponível em: https://ebt2022.com.br/wp-content/uploads/2022/06/1654532724_25590_Supl._661_EBT_2022_2-2.pdf

Fagin JA, Wells SA. Biologic and Clinical Perspectives on Thyroid Cancer. Longo DL. ed. New England Journal of Medicine 2016;375(11):1054–1067; https://doi.org/10.1056/NEJMra1501993

Nikiforov YE, Steward DL, Robinson-Smith TM, et al. Molecular Testing for Mutations in Improving the Fine-Needle Aspiration Diagnosis of Thyroid Nodules. J Clin Endocrinol Metab 2009;94(6):2092–2098; https://doi.org/10.1210/jc.2009-0247

Agrawal N, Akbani R, Aksoy BA, et al. Integrated Genomic Characterization of Papillary Thyroid Carcinoma. Cell 2014;159(3):676–690; https://doi.org/10.1016/j.cell.2014.09.050

Eszlinger M, Hegedüs L, Paschke R. Ruling in or ruling out thyroid malignancy by molecular diagnostics of thyroid nodules. Best Pract Res Clin Endocrinol Metab 2014;28(4):545–557; https://doi.org/10.1016/j.beem.2014.01.011

Lopes JPRCP. Mutação do gene BRAF na história natural do carcinoma papilar da tireóide: implicações diagnósticas e prognósticas. Dissertação (Mestrado), Faculdade de Medicina da Universidade do Porto n.d. Disponível em: https://repositorio-aberto.up.pt/bitstream/10216/53431/2/Mutaes%20do%20Gene%20na%20BRAF%20na%20Histria%20Natural%20do%20Carcinoma%20Papilar%20da%20Tiride%20%20Implicaes%20Diagnsticas%20e%20Prognsticas.pdf

Ritterhouse LL, Barletta JA. BRAF V600E mutation-specific antibody: A review. Semin Diagn Pathol 2015;32(5):400–408; https://doi.org/10.1053/j.semdp.2015.02.010

Censi S, Cavedon E, Bertazza L, et al. Frequency and Significance of Ras, Tert Promoter, and Braf Mutations in Cytologically Indeterminate Thyroid Nodules: A Monocentric Case Series at a Tertiary-Level Endocrinology Unit. Front Endocrinol (Lausanne) 2017;8:273; https://doi.org/10.3389/fendo.2017.00273

Parangi S, Suh H. The Role of Genetic Markers in the Evaluation and Management of Thyroid Nodules. Surgical Clinics of North America 2014;94(3):515–528; https://doi.org/10.1016/j.suc.2014.03.001

Raue F, Frank-Raue K. Thyroid Cancer: Risk-Stratified Management and Individualized Therapy. Clinical Cancer Research 2016;22(20):5012–5021; https://doi.org/10.1158/1078-0432.CCR-16-0484

Xing M, Haugen BR, Schlumberger M. Progress in molecular-based management of differentiated thyroid cancer. The Lancet 2013;381(9871):1058–1069; https://doi.org/10.1016/S0140-6736(13)60109-9

Bhatia P, Abd Elmageed ZY, Friedlander P, et al. The utility of molecular markers in pre-operative assessment of thyroid nodules. Future Oncology 2015;11(16):2343–2350; https://doi.org/10.2217/fon.15.135

Ciampi R, Romei C, Ramone T, et al. Genetic Landscape of Somatic Mutations in a Large Cohort of Sporadic Medullary Thyroid Carcinomas Studied by Next- Generation Targeted Sequencing. iScience 2019;20:324–336; https://doi.org/10.1016/j.isci.2019.09.030

Santana NO. Perfil clínico e molecular dos carcinomas de células de Hürthle da tireoide. Universidade de São Paulo: São Paulo; 2020; https://doi.org/10.11606/T.5.2020.tde- 31012020-105058

Pereira DP. Análise da mutação BRAFV600E em carcinoma papilífero de tireoide. In: Dissertação (Mestrado), Instituto de Ciências da Saúde, Universidade Federal da Bahia Salvador; n.d. Disponível em: https://ppgorgsistem.ufba.br/sites/ppgorgsistem.ufba.br/files/dissertacao_danielle_2015_versaofinal.pdf

Silva RC. Análise da mutação V600E do gene BRAF e detecção imuno-histoquímica da proteína BRAF em carcinomas papilíferos de tireóide. n.d. Disponível em: http://tede2.pucgoias.edu.br:8080/handle/tede/2345

Bertelli AAT, Gonçalves AJ, Menezes MB, et al. Mutação BRAF em pacientes idosos submetidos à tireoidectomia. Rev Col Bras Cir 2013;40(2):110–116; https://doi.org/10.1590/S0100-69912013000200005

Niccoli-Sire P, Murat A, Rohmer V, et al. Familial Medullary Thyroid Carcinoma with Noncysteine RET Mutations: Phenotype-Genotype Relationship in a Large Series of Patients. J Clin Endocrinol Metab 2001;86(8):3746–3753; https://doi.org/10.1210/jcem.86.8.7767

Romei C, Mariotti S, Fugazzola L, et al. Multiple endocrine neoplasia type 2 syndromes (MEN 2): results from the ItaMEN network analysis on the prevalence of different genotypes and phenotypes. Eur J Endocrinol 2010;163(2):301–308; https://doi.org/10.1530/EJE-10-0333

Machens A, Lorenz K, Sekulla C, et al. Molecular epidemiology of multiple endocrine neoplasia 2: implications for RET screening in the new millenium. Eur J Endocrinol 2013;168(3):307–314; https://doi.org/10.1530/EJE-12-0919

Romei C, Tacito A, Molinaro E, et al. Twenty years of lesson learning: how does the RET genetic screening test impact the clinical management of medullary thyroid cancer? Clin Endocrinol (Oxf) 2015;82(6):892–899; https://doi.org/10.1111/cen.12686

Martins-Costa MC, Cunha LL, Lindsey SC, et al. M918V RET mutation causes familial medullary thyroid carcinoma: study of 8 affected kindreds. Endocr Relat Cancer 2016;23(12):909–920; https://doi.org/10.1530/ERC-16-0141

Opsahl EM, Brauckhoff M, Schlichting E, et al. A Nationwide Study of Multiple Endocrine Neoplasia Type 2A in Norway: Predictive and Prognostic Factors for the Clinical Course of Medullary Thyroid Carcinoma. Thyroid 2016;26(9):1225– 1238; https://doi.org/10.1089/thy.2015.0673

Mathiesen JS, Kroustrup JP, Vestergaard P, et al. Distribution of RET Mutations in Multiple Endocrine Neoplasia 2 in Denmark 1994–2014: A Nationwide Study. Thyroid 2017;27(2):215–223; https://doi.org/10.1089/thy.2016.0411

Cunha LL, Lindsey SC, França MIC, et al. Evidence for the founder effect of RET533 as the common Greek and Brazilian ancestor spreading multiple endocrine neoplasia 2A. Eur J Endocrinol 2017;176(5):515–519; https://doi.org/10.1530/EJE-16-1021

Machens A, Lorenz K, Weber F, et al. Geographic epidemiology of medullary thyroid cancer families: unearthing European ancestral heritage. Endocr Relat Cancer 2018;25(4):L27–L30; https://doi.org/10.1530/ERC-17-0514

Maciel RMB, Camacho CP, Assumpção LVM. Genotype and phenotype landscape of MEN2 in 554 medullary thyroid cancer patients: the BrasMEN study. Endocr Connect n.d.;v. 8, n. 3:289–298; https://doi.org/10.1530%2FEC-18-0506

Zafon C, Díez JJ, Galofré JC, et al. Nodular Thyroid Disease and Thyroid Cancer in the Era of Precision Medicine. Eur Thyroid J 2017;6(2):65–74; https://doi.org/10.1159/000457793

Lupo MA, Walts AE, Sistrunk JW, et al. Multiplatform molecular test performance in indeterminate thyroid nodules. Diagn Cytopathol 2020;48(12):1254–1264; https://doi.org/10.1002/dc.24564

Krane JF, Cibas ES, Endo M, et al. The Afirma Xpression Atlas for thyroid nodules and thyroid cancer metastases: Insights to inform clinical decision‐making from a fine‐needle aspiration sample. Cancer Cytopathol 2020;128(7):452–459; https://doi.org/10.1002/cncy.22300

Zhang M, Lin O. Molecular Testing of Thyroid Nodules: A Review of Current Available Tests for Fine-Needle Aspiration Specimens. Arch Pathol Lab Med 2016;140(12):1338–1344; https://doi.org/10.5858/arpa.2016-0100-RA

Eszlinger M, Böhme K, Ullmann M, et al. Evaluation of a Two-Year Routine Application of Molecular Testing of Thyroid Fine-Needle Aspirations Using a Seven-Gene Panel in a Primary Referral Setting in Germany. Thyroid 2017;27(3):402–411; https://doi.org/10.1089/thy.2016.0445

Filetti S, Durante C, Hartl DM, et al. ESMO Clinical Practice Guideline update on the use of systemic therapy in advanced thyroid cancer. Annals of Oncology 2022;33(7):674–684; https://doi.org/10.1016/j.annonc.2022.04.009

Bellevicine C, Migliatico I, Sgariglia R, et al. Evaluation of BRAF , RAS , RET/PTC , and PAX8/PPARg alterations in different Bethesda diagnostic categories: A multicentric prospective study on the validity of the 7‐gene panel test in 1172 thyroid FNAs deriving from different hospitals in South Italy. Cancer Cytopathol 2020;128(2):107–118; https://doi.org/10.1002/cncy.22217

Ferris RL, Baloch Z, Bernet V, et al. American Thyroid Association Statement on Surgical Application of Molecular Profiling for Thyroid Nodules: Current Impact on Perioperative Decision Making. Thyroid 2015;25(7):760–768; https://doi.org/10.1089/thy.2014.0502

Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016;26(1):1–133; https://doi.org/10.1089/thy.2015.0020

ATA Guidelines & Statements. n.d. Disponível em: https://www.thyroid.org/professionals/ata-professional-guidelines/

Rosário PW, Ward LS, Carvalho GA, et al. Thyroid nodules and differentiated thyroid cancer: update on the Brazilian consensus. Arquivos Brasileiros de Endocrinologia & Metabologia 2013;57(4):240–264; https://doi.org/10.1590/S0004-27302013000400002

Borges AKM, Ferreira JD, Koifman S, et al. Câncer de tireoide no Brasil: estudo descritivo dos casos informados pelos registros hospitalares de câncer, 2000-2016*. Epidemiologia e Serviços de Saúde 2020;29(4); https://doi.org/10.5123/S1679-49742020000400012

Published

2023-04-18

Issue

Section

Revisão de Literatura